Welcome to task_detector_api

DNext Task Detector API

Version: 0.1.0



Author: task_detector_api team

GitHub: https://github.com/pia-team/task-detector


Source Code Documentation


title: Task Detector emoji: ⚡ colorFrom: blue colorTo: red sdk: docker pinned: false app_port: 7860 short_description: AI Based Asistant from Chameleon Team, PiA


TaskDetector

Microsoft Teams conversation bot

Overview

Each message in a conversation is an Activity object of type messageType: message. When a user sends a message, Microsoft Teams posts the message activity to your bot. Teams sends a JSON object to your bot's messaging endpoint and Teams allows only one endpoint for messaging. Your bot examines the message to determine its type and responds accordingly.

Basic conversations are handled through the Bot Framework connector, a single REST API. This API enables your bot to communicate with Teams and other channels. The Bot Builder SDK provides the following features:

Easy access to the Bot Framework connector. Functionality to manage conversation flow and state. Simple ways to incorporate cognitive services, such as natural language processing (NLP). Your bot receives messages from Teams using the Text property and it sends single or multiple message responses to the users.

Technologies

Setup and Installation

Prerequisites

Build and Run

Uvicorn (development mode)

bash git clone https://github.com/pia-team/task-detector.git

bash cd task_detector

Environment

python environment

```bash python -m venv venv

source venv/bin/activate ```

Conda environment

```bash conda create --name task_detector_env python=3.10 pytorch-cuda=12.1 pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers -y

conda activate task_detector_env

python3 -m ipykernel install --user --name=task_detector_env

```

Install dependencies

bash pip install -r requirements.txt

bash cp .env.default .env cp .env.default .env.prod

bash uvicorn app.main:app --host 0.0.0.0 --port 8001 --env-file .env

python (development mode)

bash python main-dev.py

Docker (development mode)

bash docker-compose up --build

Access the application

Folder Structure

```plaintext . ├── app │ ├── api │ ├── bots │ ├── config │ ├── entity │ ├── repository │ ├── service │ ├── security │ ├── utils │ ├── main.py ├── tests

```

APIs

Add new entity

TODO

Conclusion

This FastAPI MongoDB application is structured to provide a robust and scalable API solution. By leveraging Docker and CI/CD practices, the application can be easily deployed and maintained.

Feel free to contribute to this project by submitting issues or pull requests!

References