DNext Task Detector API
Version: 0.1.0
Author: task_detector_api team
title: Task Detector emoji: ⚡ colorFrom: blue colorTo: red sdk: docker pinned: false app_port: 7860 short_description: AI Based Asistant from Chameleon Team, PiA
Microsoft Teams conversation bot
Each message in a conversation is an Activity object of type messageType: message. When a user sends a message, Microsoft Teams posts the message activity to your bot. Teams sends a JSON object to your bot's messaging endpoint and Teams allows only one endpoint for messaging. Your bot examines the message to determine its type and responds accordingly.
Basic conversations are handled through the Bot Framework connector, a single REST API. This API enables your bot to communicate with Teams and other channels. The Bot Builder SDK provides the following features:
Easy access to the Bot Framework connector. Functionality to manage conversation flow and state. Simple ways to incorporate cognitive services, such as natural language processing (NLP). Your bot receives messages from Teams using the Text property and it sends single or multiple message responses to the users.
bash
git clone https://github.com/pia-team/task-detector.git
bash
cd task_detector
```bash python -m venv venv
source venv/bin/activate ```
```bash conda create --name task_detector_env python=3.10 pytorch-cuda=12.1 pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers -y
conda activate task_detector_env
python3 -m ipykernel install --user --name=task_detector_env
```
bash
pip install -r requirements.txt
bash
cp .env.default .env
cp .env.default .env.prod
bash
uvicorn app.main:app --host 0.0.0.0 --port 8001 --env-file .env
bash
python main-dev.py
bash
docker-compose up --build
```plaintext . ├── app │ ├── api │ ├── bots │ ├── config │ ├── entity │ ├── repository │ ├── service │ ├── security │ ├── utils │ ├── main.py ├── tests
```
TODO
This FastAPI MongoDB application is structured to provide a robust and scalable API solution. By leveraging Docker and CI/CD practices, the application can be easily deployed and maintained.
Feel free to contribute to this project by submitting issues or pull requests!